Optical Delay Line Optical Delay Line (ODL) is used for testing and calibrating RADAR systems or communication networks. RF signals are converted into optical signals, transmitted over an optical fiber with a given length (a fixed time delay) and converted back into electrical signal. ODL is specified also by its operating frequency band: L, S, C, X, Ku or a wideband ODL which covers a part or the full range of frequencies from 10MHz up to 18GHz. ODL is controlled from the front panel or from remote PC, either through serial communication RS232 or Ethernet. #### Time delay Negoh-Op produces three groups of ODLs: - 1. ODL with a single time delay from 100nsec up to 300 µsec delay (20m 60km of fiber). - 2. ODL with 2-8 switchable delays - 3. Progressive ODL by a network of optical switched number of delays can be increased up to 512 states. Time delay accuracy is 0.01%/ 0 C . For using at outdoor, when high accuracy of the time delay is required, optional temperature compensation can be applied. #### RF and optical components for specific requirements are optional: - 1. RF circulator for a single RF input/output - 2. RF amplifier or attenuator for controlling the RF level - 3. Constant RF gain in a progressive ODL - 4. Two signals with delay between, simulating two targets. - 5. Addition of Doppler shift to the ODL - 6. Stabilization of the RF phase in the ODL ## **Product Specifications** | Parameter RF | L Band | S Band | C Band | X Band | wide Band | Unit | |---|--|---------------------------|-------------------------|-------------------------|-------------------------|----------------------| | Frequency Range [1] | 0.1 – 2.4 | 0.1-4 | 0.1-8 | 8-12 | 0.1-18 | GHz | | Delay accuracy [2] | 1 | | | | | % | | Repeatability and stability over +/-10 °C [3] | 0.01 | | | | | % | | over +/-10 °C [3] RF Gain [4] | 0 | | | -30 | -30 | dB | | Gain Flatness | ±1.5 (max)
±0.9 (typ.) | ±1.5 (max)
±0.9 (typ.) | ±2 (max)
±1.2 (typ.) | ±2 (max)
±1.5 (typ.) | ±2.5 (max)
±2 (typ.) | dB | | 1dB compression point | 0 15 | | | | dBm | | | Maximum RF input level no damage | +13 +23 | | | | | dBm | | VSWR (S11) | 1.7 :1 (typ.) | | | | - | | | Noise Figure [5] | 25 (typ.) | 35 (typ.) | 40 (typ.) | 40 (typ.) | 45 (typ.) | dB | | SFDR | 100 | | | | | dB/Hz ^{2/3} | | Spurious level | <-80 | | | | dBm | | | Added Phase Noise [6] | <-140 | | | | (dBc/Hz) | | | Group Delay | 0.1 | | | | | nsec | | Input and output impedance | 50 | | | | | Ohm | | Mechanical and Environme | ntal | | | | | | | Rack mount Chassis Dimensions Mini ODL Dimensions | 3U X 19" X 450
(135 X 483X 450)
260 X 160 X 72 | | | | | mm | | Rack mount Power Supply voltage | 90-240 | | | | VAC | | | Mini ODL Power Supply | 5 ± 0.25
0.5 | | | | | VDC
A | | RF input and output connectors | | | SMA or N-type | | | - | | Operating temperature range ^[6] | -20 to +70 | | | | | °C | | Storage Temperature range | -40 to +85 | | | | °C | | - [1] Any frequency band between 0.01GHz to 18 GHz - [2] 0.1% Optional - [3] Optional can be corrected by software - [4] Can be adjusted with pre/post amplifiers to the desired request - [5] Can be improved by pre amplifier - [6] At 1 KHz ### **DB9 Mini ODL connectors** | D9-male | | | | |------------|----------|--|--| | Pin Number | Value | | | | 1+2 | +5 VDC | Operating voltage for RFoF Tx and Rx | | | 3 | NC | Not Connected | | | 4+5 | 0 | Ground | | | 6,7,8,9 | NC | Not connected | | | D9 -Female | | | | | Pin Number | Value | | | | 1 | Tx Led + | Tx Led | | | 2 | Tx Led - | Power on/off | | | 3 | Rx Led + | Rx Led | | | 4 | Rx Led - | Ground | | | 5 | Shutdown | At Low voltage or unconnected ODL is active. At high voltage (5Vdc) ODL is | | | | | shutdown | | | 6,7,8 | NC | Not connected | |